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Geometry and the nonlinear elasticity of defects in smectic liquid
crystals

CHRISTIAN D. SANTANGELO*

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA

(Received 27 November 2006; in final form 13 December 2006 )

Rotation invariance imposes nonlinearities in the elastic strain of smectic liquid crystals.
Though often neglected, in smectic liquid crystals these nonlinearities can generate new
qualitative behavior, especially in the presence of defects such as dislocations. By exploiting
geometry, I describe exact results on edge dislocations, and demonstrate a nonlinear
superposition principle for certain multiple defect configurations. Though there are few exact
results analogous to those of edge dislocations, results on twist-grain boundaries hint at an
approximate superposition principle for multiple screw dislocations also. These super-
positions, which appear to be related to the theory of minimal surfaces, exhibit unexpected
symmetries that are still poorly understood.

1. Introduction

In a crystal or liquid crystal, rotation invariance requires

nonlinearities in the elastic strain [1]. Typically, these

nonlinearities are tractable only numerically; analytical

progress is made, instead, using the equivalent linear

problem, which is optimistically presumed to be valid in

the limit of small strain. In studying the strain fields and

energetics of dislocations in smectics-A, linear elasticity is

now the stuff of textbooks [2, 3]. It has long been clear,

however, that the nonlinearities induced by rotation

invariance lead to qualitative phenomena in liquid

crystals even in the limit of small strain, as revealed by

their anomalous elasticity [4–6] and the Helfrich-Hurault

instability under dilative strain [7]. Even far from the core

of an edge dislocation, the induced layer deformation can

differ dramatically from what is predicted by the linear

theory [8–11]. Furthermore, these essential nonlinearities

induce a long-range interaction between parallel screw

dislocations and strongly modify their energetics [12].

In this article, I will review recent progress on

understanding the nonlinear elasticity of dislocations

in smectic-A liquid crystals. This progress has been

made by utilizing the geometry of the smectic layers as

an organizing principle. While it has long been under-

stood that geometry is essential to understanding the

bending of the individual layers, geometry in layered

systems is a fully three-dimensional affair - because of

the compression energy between layers, it is equally

important to understand how the layers fill space. In

fact, the curvature of the layers is intrinsically coupled

to the spacing between them [13], and this subtle

interplay leads to numerous theoretical complications.

Nevertheless, this realization can also be leveraged into

an exact solution of the layer profile around isolated

dislocations, and a nonlinear superposition principle

between edge dislocations. No nonlinear superposition
principle is known for screw dislocations, on the other

hand. However, I will describe recent work using linear

superposition to understand the nonlinear behavior of

screw dislocations in large-angle, twist-grain boundary

phases. Surprisingly, there are hints of a more general,

but approximate, superposition principle for screw

dislocations.

Smectics-A are conveniently described using a phase

field, w(x), where the density of material is given by
r(x)<r0+r1 cos[2pw(x)/a]+... for layers with spacing a.

The average density is r0 and r1 is the smectic order

parameter. The midplane of the layers lie on surfaces of

constant w(x)50,¡a,¡2a,… and, because we are

concerned with smectics-A only in this article, the

molecular director bnn always lies along the unit normal
bNN~+w= +wj j.

The bending energy, Fb, of the layers is inherited from

the splay term of the Frank free energy for the nematic,

Fb~
K1

2

ð

d3x +:bnnð Þ2 ð1Þ

Two other terms appear in the Frank energy: the

twist, bnn: +|bnnð Þ and the bend, bnn| +|bnnð Þ. In smectics,

the twist must vanish except at a defect core. The bend,*Corresponding author. Email: santancd@physics.upenn.edu
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on the other hand, is tightly coupled to the layer spacing

- if it is nonzero, the compression strain is also nonzero

and dominates the energy. In light of this, it is typical to

neglect the bend. In many applications, it also becomes

necessary to add the saddle-splay term,

FSS~
K24

2

ð

d3x+: bnn +:bnnð Þ{ bnn:+ð Þbnn½ �: ð2Þ

This term is a total derivative and can be evaluated on

the boundaries. Though it contributes to the total

energy of a dislocation, it does not affect the strain

fields induced by the dislocation core in the surrounding

layers.

The bending energy and saddle-splay have a com-

pletely geometrical interpretation. They can be rewritten

in terms of the two invariant curvatures of a surface: the

mean curvature, H5(1/r1+1/r2)/2 and the Gaussian

curvature, K51/(r1r2), where r1 and r2 are the two

principle radii of curvature for the surface. Rewriting

the curvatures in terms of the unit normal vector, the

mean curvature is H~{+:bNN
�

2 and the Gaussian

curvature is K~+: bNN +:bNN
� �

{ bNN:+
� �

bNN
h i

�

2 when eval-

uated on the layers [14].

The compression strain is also written in terms of

gradients of w. The equilibrium layer spacing is given by

the condition |Hw|51, with a larger layer spacing when

|Hw| is small and smaller layer spacings when |Hw| is

large. There are two versions of the compression strain

we will use,

uzz~
1{ +wð Þ2

2
ð3Þ

and

u0zz~1{ +wj j ð4Þ

Both choices are consistent with rotation invariance.

Though equation (3) is more natural from the point of view

of Landau theory [1, 2], equation (4) is more natural from

the point of view of the layer geometry. It is typical to write

the strain in terms of the Eulerian displacement field, u

defined by choosing a reference direction, usually z, and

writing w5z2u. Expanding equations (3) and (4) in powers

of u yields,

uzz~Lzu{
1

2
+uð Þ2

u0zz~Lzu{
1

2
+\uð Þ2z � � �

ð5Þ

where +\~bxxLxzbyyLy. The nonlinear terms in u appearing

in equations (5) enforce the rotation invariance of the

strain. Unlike nonlinearities arising from, say, cubic or

higher order terms in the Eulerian strain, neglecting the

nonlinearities in equations (5) results in the loss of rotation

symmetry in the free energy. That this can be dangerous is

already apparent in the dilatative Helfrich-Hurault effect,

in which the nonlinearities of the strain lead to a periodic

wrinkling of the layers [7]. Nevertheless, it is typical to
neglect these nonlinearities to simplify the problem of

finding layer configurations around dislocations.

In what follows, I will consider the energetics and layer

structure of screw and edge dislocations in the nonlinear

theory in detail. Though these dislocations can be

continuously rotated into one another (that is, they are

topologically equivalent), they show a number of striking

geometrical differences that necessitate different

approaches. For example, edge dislocations, because they

bend in only one direction, have no Gaussian curvature.
Due to this, I will show that there is a nonlinear

superposition principle for some configurations of edge

dislocations. Screw dislocations, on the other hand, have

negative Gaussian curvature so are not amenable to the

same methods. Despite this, there are tantalizing hints of

an analogous superposition principle for screw disloca-

tions related to the classical theory of minimal surfaces.

Defect superposition can then be used to construct
topologically complex smectic phases, exemplified by the

celebrated twist-grain boundary phase.

2. Linearized dislocations in smectics

The linearized smectic free energy is

F~
B

2

ð

d3x Lzuð Þ2zl2 +2
\u

� �2
h i

, ð6Þ

where B is the bulk modulus, l~
ffiffiffiffiffiffiffiffiffiffiffi

K1=B
p

and

+\~bxxLxzbyyLy is the in-plane gradient. A uniform

rotation of all the layers by an angle h, given by u(x,

z)5z[cos(h)21]+x sin(h), does not preserve this free

energy. Nonetheless, equation (6) has a significant

advantage over the full free energy: the Euler-
Lagrange equation for the extrema is linear and,

therefore, easily solved. Moreover, combinations of

defects, as occurs in the TGBA phase for example, can

be built up by direct linear superposition of the single

defect solutions.

Screw dislocations in the linear theory have burgers

vector and defect core axis along the bzz direction.

Equation (6) is exactly minimized by [2, 3, 15]

uscrew~
b

2p
tan{1 y

x

� �

ð7Þ

This has a nonzero topological charge since
Þ

dl:+u~b. The length b5na, where a is the layer

12 C. D. Santangelo
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spacing and n is an integer, is the burgers scalar for the

screw dislocation. Since uscrew is independent of z and is

a harmonic function in the xy-plane, uscrew has

vanishing linear energy. Furthermore, this implies the

vanishing of the interaction energy between screw

dislocations because linear superpositions of harmonic

functions are still harmonic. As it happens, uscrew is also
a solution of the nonlinear smectic free energy (with

either u9zz or uzz as the compression strain). In

computing the energy, however, it becomes evident that

the linear theory has generated a significant error: the

nonlinear energy diverges near the dislocation core.

Introducing a microscopic cutoff, the screw dislocation

line tension scales as Bb4/j2 for a characteristic core size

j, not zero!

In the case of a single edge dislocation with burgers
scalar b, the minimum of equation (6) is also known: [2,

3]

uedge~sgn zð Þ b
4

erf
x
ffiffiffiffiffiffiffiffiffiffi

4l zj j
p

 !

z1

" #

ð8Þ

The topological charge of the edge dislocation is also
Þ

dl:+u~b. This integral is nonzero because u is singular

at the origin: as zR0 from below, we have u2(x,

0)52bH(x)/2, whereas u+(x, 0)5bH(x)/2 as zR0 from

above. This singularity can be interpreted as a boundary

at z50 dividing the smectic into two half-spaces, one

above and one below the dislocation. In this way, defect
cores act as boundary conditions for the minimization

of the smectic free energy. The line tension associated

with the bending of the layers around the dislocation

core is computed to be t~Blb2
�

3
ffiffiffi

p
p

jð Þ for a core of

characteristic size j [2, 3].

Even in the edge dislocation case, the linear theory

has developed a significant error. This is evident if we

compute H)uedge and Lzuedge from equation (8): [2]

Lzuedge~{
b

8

ffiffiffiffiffiffiffiffiffiffiffiffi

pl zj j3
q exp {

x2

4lz

� �

+\uedge~
bbxx

4

ffiffiffiffiffiffiffiffiffiffiffiffi

pl zj j1
q exp {

x2

4lz

� �
ð9Þ

Along the parabolas of maximum strain, x25¡4l|z|,

we have +\uð Þ2
.

Lzu*
ffiffiffiffiffi

zj j
p

which actually diverges as

zR‘. We conclude that we were mistaken to drop

(H)u)2 relative to Lzu in the compression strain even in

the limit of small strain very far from the dislocation

core.

Though edge and screw dislocations are topologically

identical (indeed, rotating a screw dislocation into the

plane of the layers converts it to an edge dislocation),

the failure of the linear theory in both cases is very

different. Their treatment in the nonlinear theory is,

likewise, very different.

3. Nonlinear edge dislocations

Consider the compression strain u9zz, yielding total free

energy

F~
B

2

ð

d3x 1{ +wj jð Þ2zl2 +:bnnð Þ2
h i

: ð10Þ

Free energy (10) exhibits a class of exact minima that

can be extracted utilizing a procedure invented by

Bogomol’nyi, Prasad, and Sommerfield (BPS) for the

study of magnetic monopoles and vortices in quantum

field theory [16, 17]. First, complete the square in

equation (10), introducing a cross-term:

F~
B

2

ð

d3x 1{ +wj j{l+:bnnð Þ2z2l 1{ +wj jð Þ+:bnn
h i

: ð11Þ

The goal of the BPS procedure is to then re-express

the cross-term as a total derivative, if possible.

Notice that, for equally-spaced layers,

{
Ð

d3x +wj j+:bnn~2a
P

i

Ð

i
dAiH, where the index i labels

the layer and dAi is the area element of the ith layer. For

surfaces in three dimensions, there exists a geometrical

relation, first discovered by Minkowski [18], relating the

integral of the mean curvature over a closed surface to

an integral of the Gaussian curvature. For smectics, a

generalization of Minkowski’s result is required [11]:
ð

d3x +wj jH~

ð

d3x wK{+: +wj j~yy
� �h i

, ð12Þ

where ~yy is defined by the relation +:~yy
.

2~K , the

Gaussian curvature.

For edge dislocations, K50, and equation (12) can be

used to express the cross-term of equation (11) as a total

derivative. The consequence of this is that the cross-

term plays no role in the minimization of the

surrounding layers. Because it is a total derivative, it

reduces to an integral on the boundaries, i.e. at the

dislocation core. The general form of the free energy is

now

F~

ð

d3x C2+2l

ð

dA 1{2 +wð Þ:~yy
h i

, ð13Þ

where C~1{ +wj j+l+:bnn and the area integral is

evaluated on the boundary of the smectic. The two

possible signs of equation (13) arise because we may

complete-the-square with either sign.

Defects in smectic liquid crystals 13
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We identify a special class of minima, BPS minima,

found by setting the perfect square, G, to zero. A

surprising feature of these BPS minima is that they

satisfy a lower-order differential equation than the

Euler-Lagrange equation for the free energy. The

condition G50 implies the equation

1{ +wj j~+l+:bnn, ð14Þ

for which only half of the boundary conditions need to

be specified.

Therefore, the procedure for finding a BPS minimum

is to use half the boundary conditions and verify that

the remaining desired boundary conditions are satisfied

automatically; if they are not, the desired boundary

conditions do not admit such a solution.

To illustrate this, consider a single edge dislocation at

z50. Using w5(b/4)[erf(x2/j2)+1] at z50, we solve

1{ +wj j{l+:bnn~0 for the layers z.0 and w52(b/

4)[erf(x2/j2)+1] with 1{ +wj jzl+:bnn~0 for the layers

z,0. The equations result in flat layers as zR¡‘ and so

satisfy the boundary conditions for an edge dislocation

in a bulk smectic. The solution is shown in figure 1. The

line tension is evaluated by noting that, since the perfect

square is zero, the free energy of the configuration is

determined entirely from the boundary terms arising

from the total derivative. This yields

t~Bl

ð

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z
b2

j2
exp {x2

�

j2
� �

s

, ð15Þ

which is linear in b for b&j, rather than quadratic [11].

Far from the dislocation core, the first-order BPS

equation becomes [10, 11]

Lzu{
1

2
+\uð Þ2~+l+2

\u, ð16Þ

which has the exact displacement field

u~2l sgn zð Þln 1z
eb= 4lð Þ{1

2
erf x

.
ffiffiffiffiffiffiffiffiffiffi

4l zj j
p

� �

	 


: ð17Þ

This solution was originally found by Brener and

Marchenko [8] by solving the Euler-Lagrange equation

directly. The displacement field is vastly different from

the linear theory unless b%4l. In fact, the linear

solution can be distinguished from the exact solution

even far from the dislocation core along the parabolas

of maximum strain, x25¡4l|z|. The deviation of the

layers from the linear theory can be measured experi-

mentally, as has been done by Ishikawa and

Lavrentovich in a cholesteric finger texture [9] and

again by Smalyukh and Lavrentovich [19] using

confocal microscopy.

From this construction emerges a surprising non-

linear superposition principle. Consider two edge

dislocations located on the plane z50 (see figure 2).

These two dislocations determine the shape of the first

unbroken layer on either side of the dislocations, and

the BPS evolution equation can be used to determine

the shape of all remaining layers. In the far-field limit,

we solve equation (16) to find that we can superpose the

solutions inside the logarithm. In other words,

u zw0ð Þ~2l ln 1zA1uedge,1zA2uedge,2

� �

, ð18Þ

where uscrew,i are the linear solutions for each of the

individual edge dislocations, and the constants Ai are

determined by the boundary conditions at z50. For

example, a pair of dislocations with burgers scalar b has

A15(4/b)exp[b/(4l)21] and A25(4/b)exp[b/(2l)]2A1.

Very quickly, the layer profile deviates from that found

by superposing two edge dislocations in the linear

Figure 1. Edge dislocations with burgers scalar 4a in the far-
field limit. The solid line is the BPS solution, the dashed line
the solution from linear elasticity. All lengths are measured in
units of l.

Figure 2. A pair of b5+4a edge dislocations in the far-field
limit. The solid line is the BPS solution, the dashed line the
solution from linear elasticity, and lengths are measured in
units of l. The core region is not shown.

14 C. D. Santangelo
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theory, as can be seen in figure 2. Interestingly, the

interaction energy between them agrees with the linear

theory, as long as their separation is much larger than

their core size [11].

Exact solutions are often useful because they tease

hidden structures from equations not apparent at first.

However, these solutions can also be quite limited. For

multiple edge dislocations with intervening layers, for

example, there is no BPS solution possible. This can be

traced to the failure of the solution of equation (16) to

satisfy the appropriate multi-defect boundary condi-

tions. That is, the BPS solution only allows us to set a

single boundary condition in the region z.0 and there is

no layer that can be ‘‘glued’’ seamlessly to another BPS

edge dislocation solution unless the dislocations are

infinitely far apart. How to rectify these shortcomings is

a matter of current research.

4. Nonlinear screw dislocations

The BPS solution also fails when the layers have

Gaussian curvature because the free energy cannot be

put into the form of a perfect square plus boundary

terms. Due to this, screw dislocations are not BPS

minima. Nevertheless, the linear superposition of screw

dislocations exhibits a number of surprises that suggest

there is considerably more structure in the nonlinear

smectic free energy than meets the eye. In this section, I

will discuss the smectic structures that can be built by

summing screw dislocations.

Within linear elasticity, the displacement field for a

screw dislocation of burgers scalar b is given by uscrew in

equation (7). Considering the failure of the linear theory

to describe the layers in an edge dislocation, it is

somewhat surprising that uscrew is also an exact

extremum of the nonlinear energy with both u9zz or

uzz. Another striking property of equation (7) is that

+:bnn~0, implying that uscrew describes a minimal surface,

that is, a surface with no mean curvature (and hence

extremal area for a given topology). For b52, this

surface is called the helicoid (figure 3). Its existence has

been known at least since 1785, when J.B. Meusnier

proved it was minimal [20].

Since Lzuscrew50 and +2
\uscrew~0 (except at the core),

the linear energy of the screw dislocation is zero! In fact,

this is dramatically incorrect: substituting equation (7)

into a rotationally-invariant energy yields a divergence

that must be regularized by introducing a cutoff at the

core. If we form a linear superposition of screw

dislocations, the linear energy is still zero and the screw

dislocations, therefore, do not interact. In the nonlinear

theory, on the other hand, the deformations of the layer

induce an interaction that, at least in some cases, is a

power law [12].

Since H50, the radii of curvature are equal and

opposite (1/r1521/r2) and the layers have negative

Gaussian curvature. Subsequently, there is not a super-

position principle for screw dislocations analogous to

the BPS decomposition for edge dislocations. Such a

principle may exist, however, at least in an approximate

sense. Consider two alternate constructions for a twist-

grain boundary, in which asymptotically flat layers

rotate across the grain boundary by a fixed angle. Since

this is incompatible with smectic order because it

introduces twist, bNN: +|bNN
� �

, into the layers, this

frustration is alleviated by the formation of parallel

screw dislocations within the grain boundary [21].

One construction was given by Kamien and

Lubensky [12] by directly utilizing a linear superposition

of screw dislocations of the form,

wTGB~cz{
b

2p

X
?

n~{?

tan{1 y

xz‘dn

� �

: ð19Þ

for which the twist angle is a~2 sin{1 b= 2‘dð Þ½ � (see

figure 4). The constant c is set by ensuring that the

compression strain of the layers vanishes at infinity.

Alternatively, we might reason that, since the layers

of a single screw dislocation are minimal surfaces,

minimal surfaces may provide a reasonable approxima-

tion to the layers in this more complicated geometry

also. In fact, a relic minimal surface known as Scherk’s

first surface exists for which asymptotically flat layers

rotate by ninety degrees [22]. This surface has been

conjectured as the structure twist-grain boundaries in

diblock copolymers [23]. There are also deformed

Figure 3. The helicoid corresponds to a screw dislocation
with topological charge 2.

Defects in smectic liquid crystals 15
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Scherk surfaces corresponding rotation angles other

than p/2. As it turns out, these two constructions of a

twist-grain boundary are not so different: stretching the

y coordinate of wTGB by cos(a/2) for b52 a yields

Scherk’s first surface or one of its deformed cousins [24].

This suggests that the mean curvature, { +:bnnð Þ=2,

though nonlinear, may exhibit a more general super-

position principle.

The similarity of Scherk’s first surface and the direct

sum of screw dislocations suggests that these two

surfaces bound the true layer configurations. Diblock

copolymers in the lyotropic smectic phase are ideal for

experimental characterization of layer structures

because they can be directly visualized by transmission

electron microscopy [23, 25]. Most recently, a trans-

mission electron microtomography reconstruction in a

polystyrene-polyisoprene diblock copolymer shows

clearly that the layer structure is very well approxi-

mated by Scherk’s first surface, as determined by the

average mean curvature of the layers [25]. A numerical

minimization for block copolymers, on the other hand,

demonstrates that wTGB is a better approximant to the

layer structure [26]. In both cases, however, the true

layer structure has an average mean curvature some-

where between that of Scherk’s first surface and wTGB.

A more recent minimization of the smectic-A Landau-

de Gennes free energy functional also demonstrates

that wTGB is a reasonable approximation to the true

layer structure [27]. It should be noted, however,

that for large twist angle the molecular director

decouples from the layer normal throughout the grain

boundary.

Scherk’s surface and wTGB, though they fail to

describe the layer shapes exactly, both exhibit features

that (1) inform our understanding of the true structures

and (2) may be preserved experimentally in an

approximate sense. For dislocations separated by a

distance ‘d , the level sets can be written as

wTGB~cz{ b= 2pð Þ½ �Im ln sin p=‘dð Þ xziyð Þ½ �, where the

constant c must be set to ensure that the compression

strain vanishes at infinity, i~
ffiffiffiffiffiffiffiffi

{1
p

, and Im denotes the

imaginary part of a complex number [11]. The layers,

determined by wTGB5na for integers n can be trans-

formed into the parametric equation [12]

tan
px

‘d

� �

~tanh
py

‘d

� �

: ð20Þ

Equation (20) exhibits a surprising symmetry under a

ninety degree rotation of the defects, (x, z)R(2z, x),

while taking bR2b. The rotation angle aRp2a under

this transformation. The sum of dislocations, wTGB, for

example, exhibits the following startling property: there

are multiple ways of superposing dislocations to

construct the same set of layers! For a5p/2, this gives

us a dual way of constructing exactly the same

structure, either with layers and defects along, say, the

z axis with burgers scalar b, or defects and layers along

the x axis and burgers scalar 2b.

We continue to exploit the superposition of screw

dislocations to discuss the celebrated TGBA phase [21,

28], in which smectic order coexists with a periodic

array of twist-grain boundaries. This can be achieved

theoretically, for example, by directly summing wTGB,

with the substantial complication that the orientation of

the screw dislocations must rotate with the layers. When

the rotation angle is small, linear elasticity suffices to

calculate the structure and energetics of the TGBA

phase [21]. More recently, however, materials have been

discovered that form TGBA phases of quite large

angles, some as large as ninety degrees [29]. The layer

structure of these phases are not amenable to a

straightforward linear analysis [21, 30].

To develop a theory for the p/2 TGB structure, we

again try to form a sum a screw dislocations. Though

we should, in principle, sum grain boundaries with

dislocations that alternate being along the bzz and bxx

directions, this sum is quite difficult, and probably

impossible, to perform analytically. Since in the p/2

TGBA structure, the defect axes lie along the z and x

axes alternately, the duality in wTGB allows us to rotate

all the defects to the z axis. Since they are now parallel,

it is reasonable to conjecture an approximate structure

Figure 4. A twist-grain boundary can be formed by summing
screw dislocations, with cores depicted here as black tubes.
Shown is the twist angle a5p/2.
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for the p/2 TGB phase [31].

wTGBA~cz{
b

2p

X
?

n,m~{?

{1ð Þm

Im ln xziyz‘dnzi‘bmz‘dm=2ð Þ,
ð21Þ

for grain boundaries separated by a distance ‘b. Notice

that this structure has adjacent grain boundaries with

opposite sign and shifted by half a period (see figure 5) -

this choice is arbitrary but yields some simplifications.

Here, c should be chosen to minimize the compression

energy, but a suitable ansatz is to choose it so that the

compression energy vanishes along lines midway

between adjacent grain boundaries [31]. This sum can

be performed exactly to give

wTGBA~cz{
b

2p
Im ln sn hxziyy, kð Þ, ð22Þ

where sn is a Jacobi elliptic function, h and y are scale

factors selected to yield the appropriate separations

between defects, and k2,0 is the elliptic modulus. The

resulting layers, dubbed Schnerk’s first surface, is shown

in figure 5 [31].

Schnerk’s first surface is necessarily achiral since it is

developed from a set of defects with neutral total

topological charge. While there is no known way to

scale Schnerk’s first surface to be a minimal surface, the

surface is triply-periodic and shares the same topology

as another relic minimal surface, the Schwartz D surface

[31]. This generalizes the surprising superposition of a

single TGB, but the superposition is merely approx-

imate. Interestingly, though the interaction energy

between dislocations within a single grain boundary is

a power law [12], the interaction energy between

multiple grain boundaries is exponential at long

distances, as it is in the linear theory. In the nonlinear

theory, however, the interaction length scale is given by

‘d and arises from the nonlinearities whereas in the

linear theory it arises from the director modes [21].

5. Nonlinear elasticity and general defect configurations

Understanding the nonlinear elasticity of defects in

smectics is crucial if one wants to construct complex

smectic textures by thinking of the defects as the

primary degrees of freedom. In fact, many layered

structures of complex topology can be built up by

superposition of an underlying defect network, and the

energetics and elasticity of these structures are bound up

with our understanding of how these defects superpose

in the nonlinear theory for smectics.

To illustrate the utility of this view, consider the

TGBA phase once again. As we have seen, a single

twist-grain boundary can be built from two equivalent

sets of screw dislocations. In Schnerk’s first surface, this

duality becomes a triality: the structure can be

constructed from any one of three orthogonal arrange-

ments of parallel screw dislocations. This exotic set of

defects can be used to understand some aspects of

TGBA phases with twist angles smaller than p/2. In

particular, a general angle a can be made by twisting

Schnerk’s surface by an angle d5p/22a at each grain

boundary. For sufficiently small d, the screw disloca-

tions along the pitch axis should twist along with the

structure, endowing them with an edge component and,

presumably, raising the energy [32].

However, the energetics and structure of such a

screw-edge hybrid dislocation is a completely open

question in the nonlinear theory. In general, one might

expect the energetics to differ dramatically from the

linear theory, in analogy to pure screw dislocations. At

the same time, the layer configurations will also disagree

with the linear theory as they do for edge dislocations.

While it is possible to make some general topological

statements about the underlying defect network in a

TGBA phase [32], it is difficult to make much progress

about the energetics of such phases without a more

generic theory for the nonlinear elasticity of defects.

Another open problem has to do with edge dislocations

separated by intervening layers or in smectic films. Since

these are not BPS minima because they do not satisfy

the appropriate BPS boundary conditions, they must be

Figure 5. Schnerk’s first surface is composed of parallel p/2
twist-grain boundaries formed by the linear superposition of
parallel screw dislocations [31].
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treated with a more general theory of nonlinear

elasticity.

To summarize, rotation invariance requires layered

systems to have essential nonlinearities in their elastic

strains. These nonlinearities are crucial for a precise

understanding of defects in these phases - linear elastic
theory makes incorrect predictions about the energetics

and layer structure around dislocations. It is by

understanding the geometry of smectics that allows

progress. Surprisingly, even with these nonlinearities

edge dislocations can exhibit an exact superposition

principle and screw dislocations an approximate one.
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